WHAT IS A PACKET NETWORK ======================== A local area packet radio network (LAN) consists of a net control station and a number of individual operators. The net control station is sometimes referred to as the "station node" and the individual stations as "terminal nodes". The net may also contain a digital repeater or "digipeater", which may be the net control station or a separate repeater station. The repeater station may be a single-frequency simplex repeater which re- transmits any correctly received packets, or it can be "normal" split frequency repeater. As operators sign on to the net, they are recognized by the net control and given net address codes. An operator desiring to start a QSO with another net station will subsequently have his transmissions addressed to that station. Any operator may choose to have his TNC receive all transmissions, rather than just those addressed to his station. Of course, the TNC will only acknowledge those transmissions intended for that station. The operator whose station is functioning as net control participates in exactly the same way as other operators. The net control functions are taked care of automatically by his TNC. As more packet radio LAN's become active, there will be the possibility of link stations with access to two distinct LAN's. These stations can be members of both nets and serve as communic- ations links thorugh which packets originating in one net can be funneled to an addressee in the other net. A more sophisticated possibility is that of a "gateway" station, which will be a specialized station having access to some long-distance mode of communications. The gateway station will reformat packets with another layer of protocol containing inter- network linking information and transmit it to another gateway station in a distant LAN. Three possibilities are being explored for long-distance links. TERRACON will be a high-speed ground-based linking system utilizing UHF and/or microwave relays. It could potentially handle most long-distance packet radio communications in the United States and Canada. It will probably be a few years before TERRACON is0implemented as a useful system, and somewhat longer before the continent is linked. AMICON will be a satellite-based network utilizing one of the special-services channels on the AMSAT Phase III-B satellite. AMICON will allow intercontinental linking and contact with isolated areas not accessible to TERRACON. High data rate exper- iments are being planned for the 23cm uplink/70cm downlink (mode L) translator. There are also plans for a packet radio digital repeater aboard the AMSAT Phase III-C satellite. SKIPCON is AMRAD's projected HF network of LAN gateway stations. The nature of HF propagation will require slower data rates (75 to 600 baud) and error correction as well as error detection protocol. SKIPCON experiments have been conducted since the end of 1981.