

Maintain, Modernize, or Magnify? YOU can do all three!

Agenda

L4B Tune Up; it's not what you think.

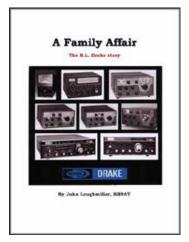
TR-7 adjustable ALC/Power, for ALL modes.

C-Line is great, but what frequency am I on?

Self-Contained, 2 tube L4B: How did he do that?

Prize Drawings.

Q&A


Resources

Drake Technical Net: Sunday, 7238 kc @ 4:00 PM Eastern

Drake & Antique Tube Gear Net: Tue. 3865 +/- kc @ 8 pm Eastern

Drake West Coast Net : Thur. 3895 +/- QRM @ 8pm Pacific Time

Drake Family Affair Book by John Loughmiller, KB9AT

Drake L4B Tune Up; It's not what you think. Evan, K9SQG

What are they used for?

First Phase: The External Tune-Up

Preventive Maintenance spoken here!

Dusting without Damage

One year's indoor dust accumulation.

Mated connectors are not immune.

How do you clean inside this connector?!

Second Phase: Dynamic checks before tune-up

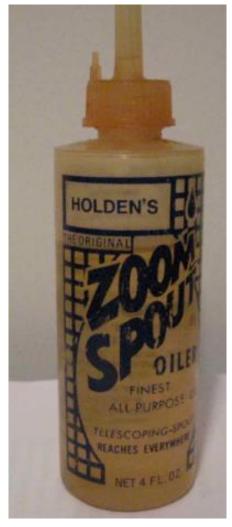
Current status? Not the status of the current.

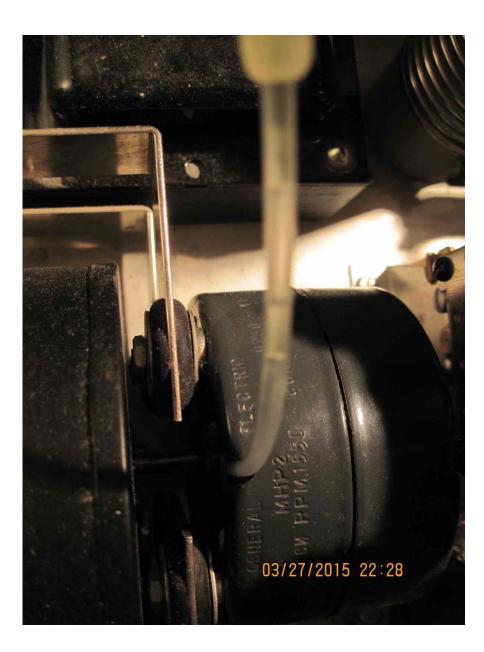
- HV caps vented in power supply?
- Meter bulbs ok?
- Input SWR and power between rig and amp, unchanged?
- Plate voltage:
 - SSB and CW
 - standby, operating w/o audio, with hard audio peaks
 - capacitor bleed down when turned off (10 second rule for "food")
- Tube color, standby, transmit without signal, with hard audio signal.

Third Phase: Internal Tune-Up

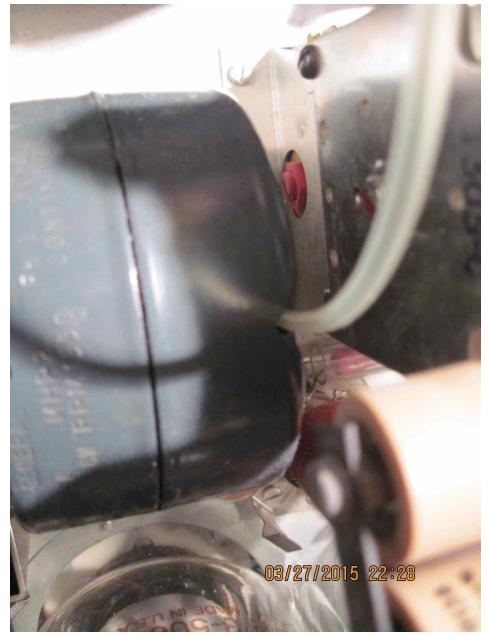
(Static tune up, or is it tune up for static?) Overall visual inspection.

Mr. Dustin Damage is not your friend.

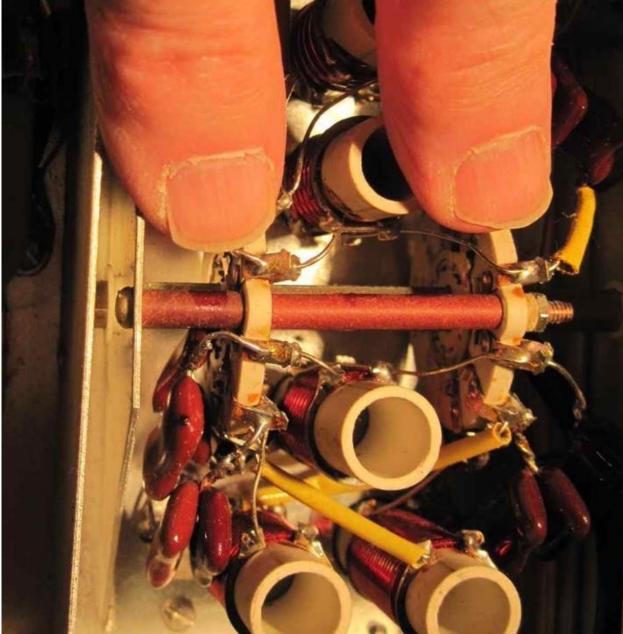


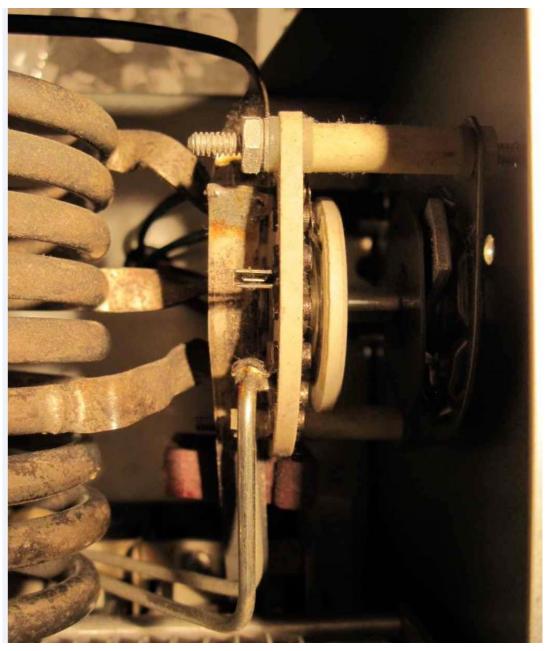


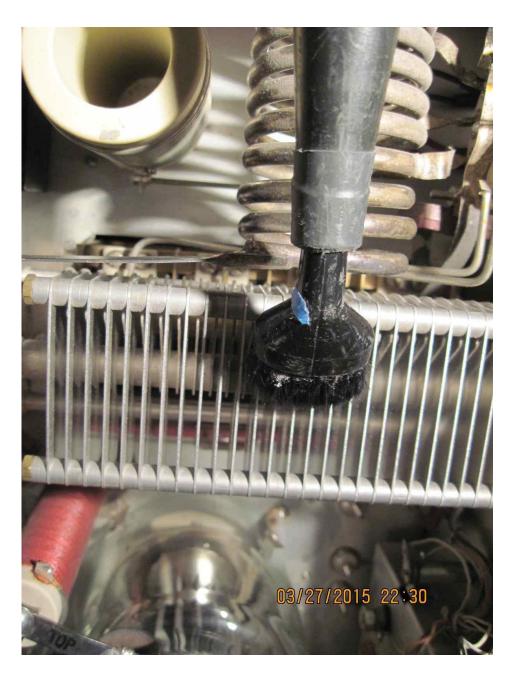
Oil change? Nah, just top it off...



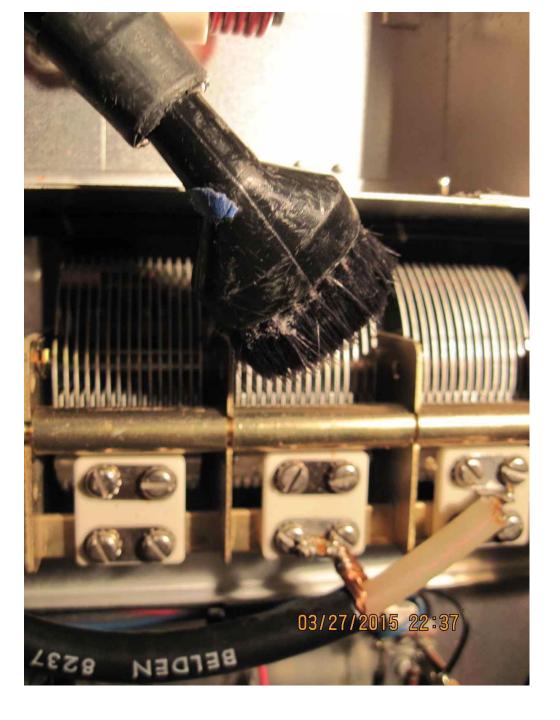
M.V.G. May 2015



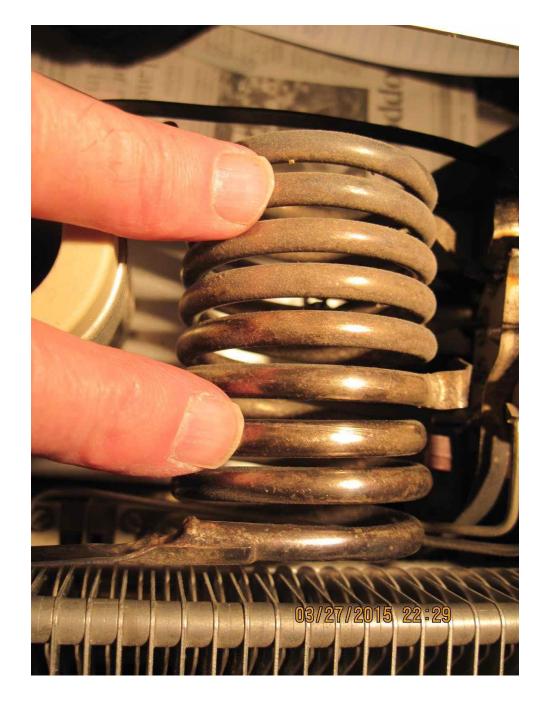

Ms. Dee Oxit: our previously shown friend not just for tube pins.


On the lighter side, for 50 cents worth of parts... Or

If you have the cabinet open anyway...



Do I have the capacity to do this?



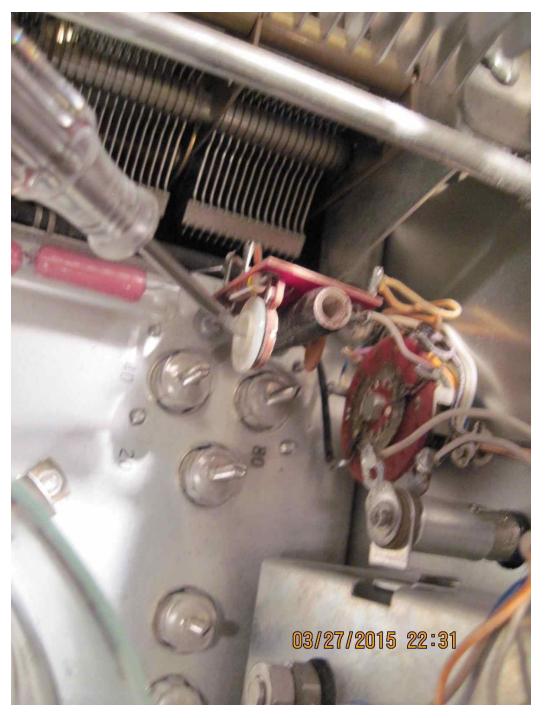
What a load...

"What difference does it make?" or Sometimes it doesn't matter.

"There is a season, turn, turn..."

If the season has seen tube or rig changes:

Check input SWR to see if input coil adjustment is needed.


Check grid current calibration.

Current Event, or non-Event?

Procedure in your owner's manual.

Fourth Phase: How to tune up on the air, or with a dummy load

(Need we go there?)

Our Assumptions Here:

You are tuning up for SSB.

Plate voltmeter is calibrated (or inaccuracy is known).

Grid ammeter is calibrated (or inaccuracy is known).

Plate ammeter is calibrated (or inaccuracy is known).

External wattmeter(s) known to be reasonably accurate.

Keep the multimeter reading GRID current, < 220 ma!!!!! That's Drake and Eimac talking, Amperex says <250 ma for their tubes.

General Tune-Up Procedures

(1) Exciter with dummy load first. Vacuum tube style vs solid state, and set power level.

(2) Then antenna tuner with antenna on unused frequency, or preferably continue with dummy load.

(3) Chart knob settings, power levels, etc.

Examples of Two Tune-Up Procedures

1. Drake's instructions

2. CW pulser or keyer with dots (in SSB mode all the time)

1. Drake's instructions (simplified)

(I'm glad you asked.)

Goal: 565 ma of plate current with no more than 220 ma grid current. First do "SSB AND AM TUNING" then "SSB OPERATION".

- Set PLATE VOLTAGE switch to CW-TUNE.
- Increase exciter output while not exceeding 400 ma of plate current, tune PLATE control for a dip. Keep grid current under 220 ma!
- Iteratively increase the exciter power, dip the PLATE, and increase LOAD controls striving to reach 565 ma of loaded plate current while keeping the grid current at or under 220 ma, at resonance.
- Insert a strong single audio tone into the microphone of the exciter and set it for maximum output. (Constant amplitude and frequency?)
- Put linear into transmit, and turn AGC control clockwise until the plate current reads 580 ma.
- Set PLATE VOLTAGE switch to SSB

2. CW pulser or keyer with dots

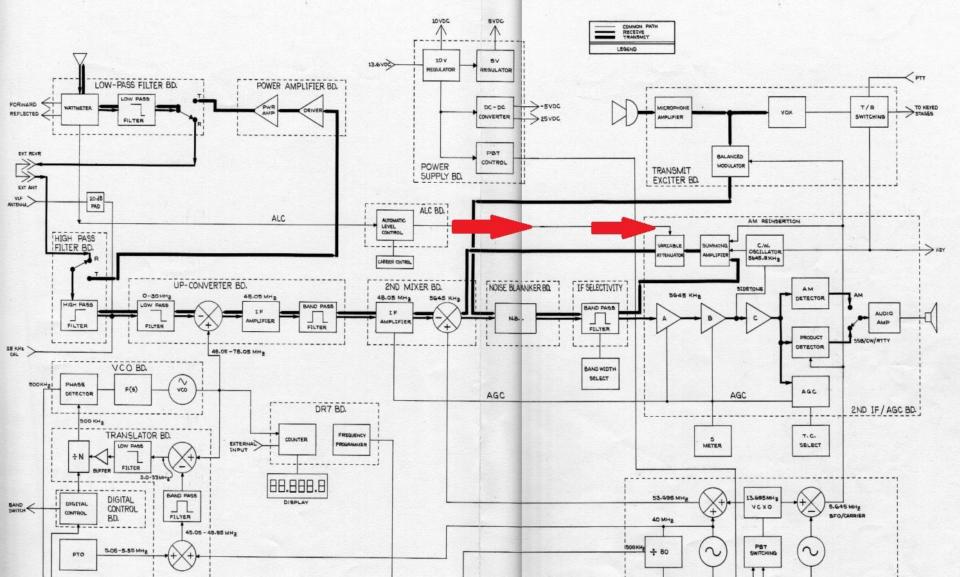
(I beg to differ, please let me differ...from Drake's instructions.)

- Set PLATE VOLTAGE SWITCH to SSB.
- Ensure exciter is set to approximately 40 watts output, level is RMS for a CW pulser, a keyer sending dots, or PEP for an SSB audio pulser.
- Set LOAD control to number "3", around 11 o'clock.
- Go into transmit and iteratively adjust PLATE and LOAD for maximum power out.
- Gradually increase driving power up to around 60 watts (MAX) and iteratively adjust PLATE and LOAD for maximum output power.
- Put exciter into CW key down condition, ensure grid current never exceeds 220 ma, and increase driving power, iteratively adjusting PLATE and LOAD for maximum output while plate current never exceeds 565 ma.
- Only if tubes are soft have I seen the need to go to 70-80 watts of driving power to achieve 220 ma of grid current.

Drake TR-7 "<u>ALC</u>" Power Control in All Modes

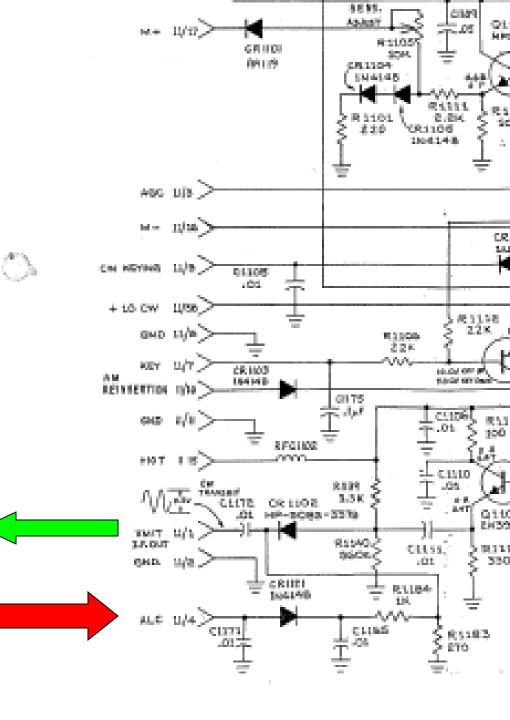
By: Jeff Covelli / WA8SAJ

TR-7 Carrier & Output Power Control


Stock

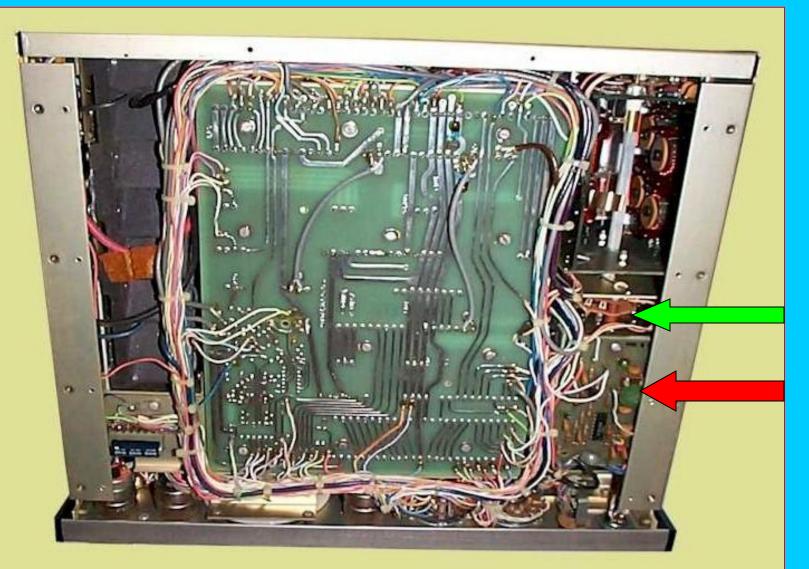
A.M. & C.W. Only

TR-7 "<u>ALC</u>" sending voltage to control drive in the 2nd I.F. audio board



2nd I.F. / Audio Board

Normal <u>ALC</u> voltage in SSB mode Varies 0 to 3 volts

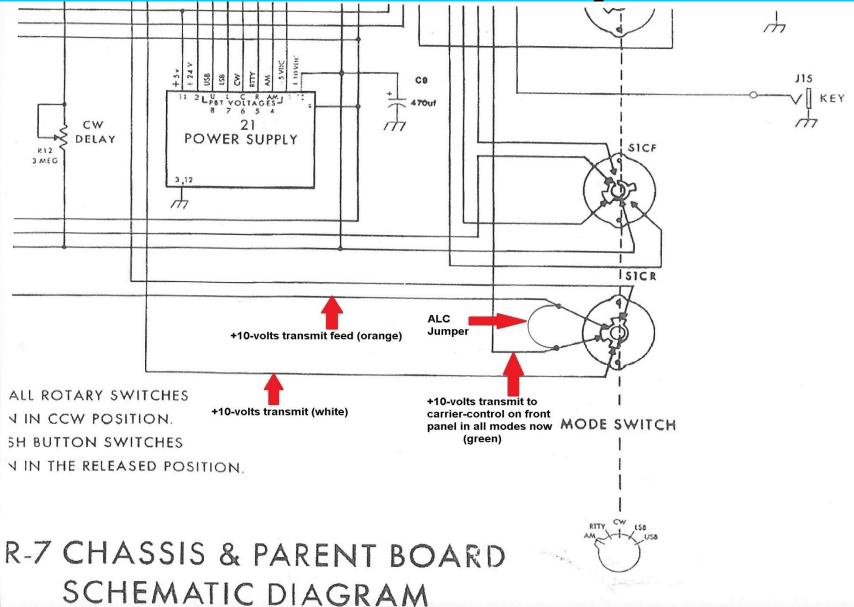

> *Transmit* 5645 kHz I.F. out

0 to 6 - D.C.Volts total <u>ALC</u> voltage

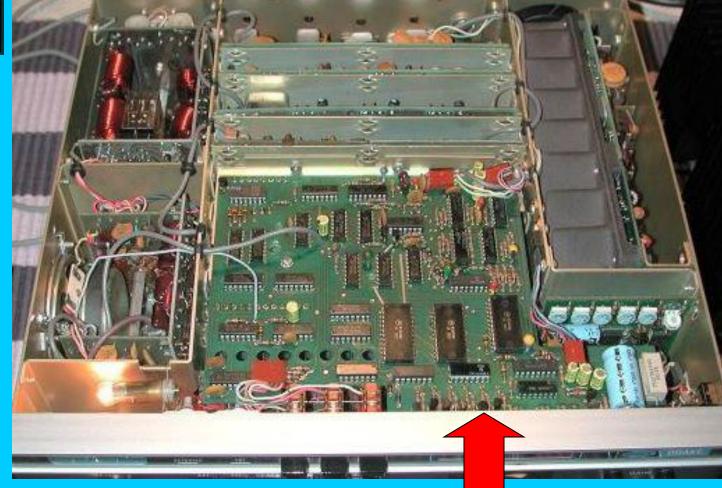
TR-7 Bottom View

10 & 15 Wafer <u>ALC</u> Pot

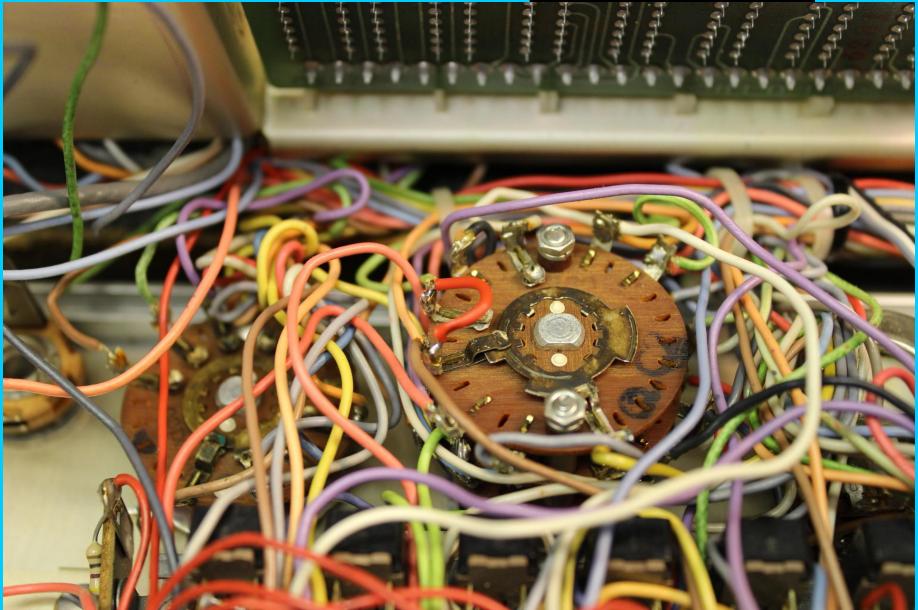
R-1603



TR-7 Bottom View of ALC Board

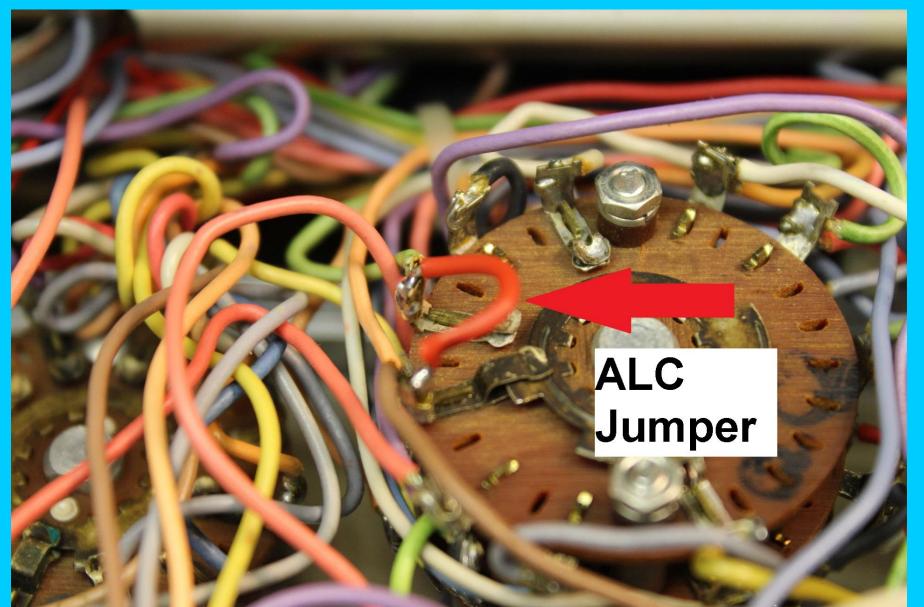


TR-7 Mode Switch Layout


Before removing the DR-7 board

Use an ESD static wrist strap tied to ground !

Along with the TR-7 tied to ground !

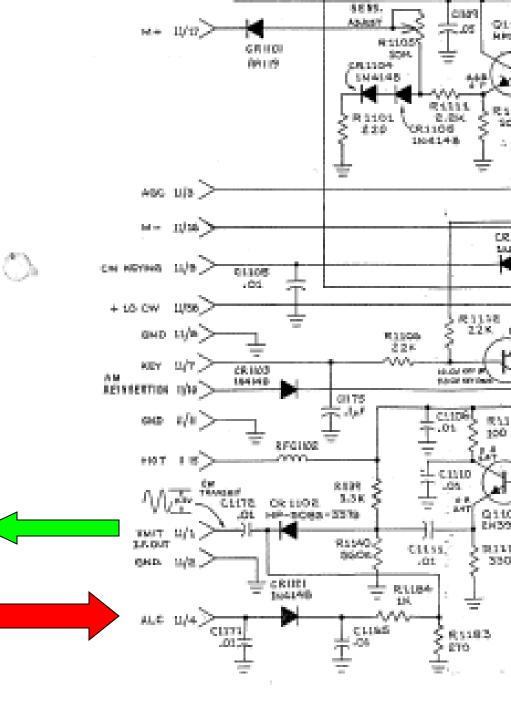


TR-7 Mode Switch "Back View"

TR-7 Install an ALC Jumper

TR-7 Carrier & Output Power Control

VOX ANTI GAIN CW VOX DELAY RCVR GAIN GAIN OC. RRIER •AF ORF PWR OFF


Now Full Power Control In All Modes

Normal <u>ALC</u> Voltage in SSB mode Varies 0 to 3 volts

Transmit 5645 kHz I.F. out

0 to 6 - D.C.Volts total <u>ALC</u> voltage

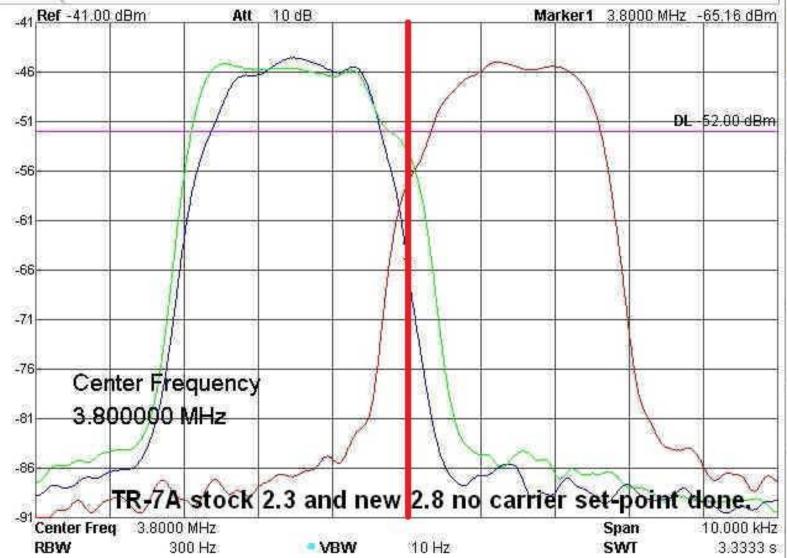
The End

Drake TR-7 Stock 2.3 kHz Wide Filter

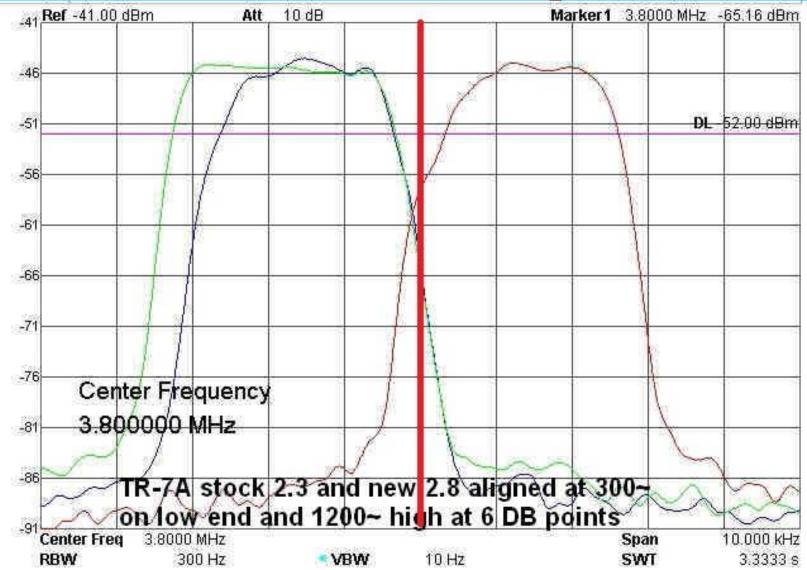


INRAD 2.8 kHz Wide Filter Part Number - 1714.2

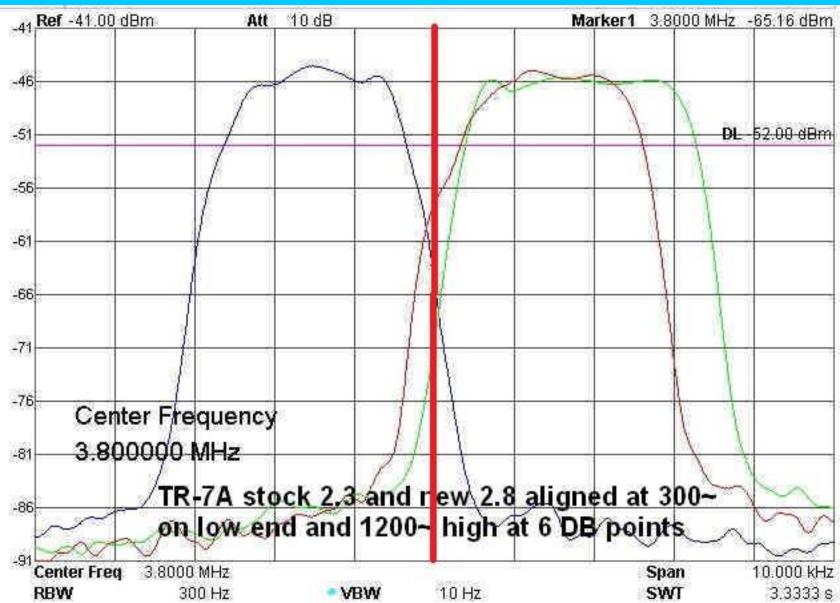
By: Jeff Covelli / WA8SAJ



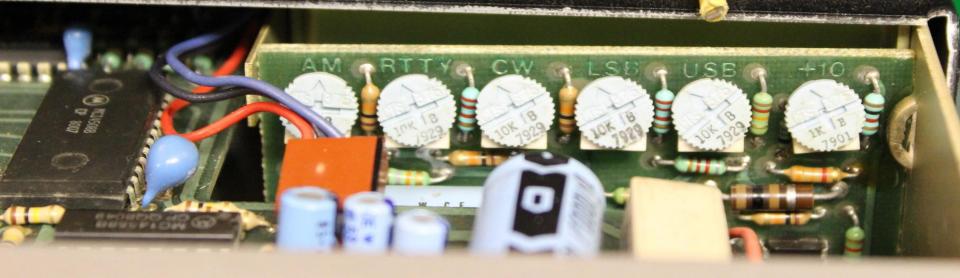
TR-7 New INRAD 2.8 kHz Filter Installed & the stock 2.3 kHz installed in the "A" slot now for receive



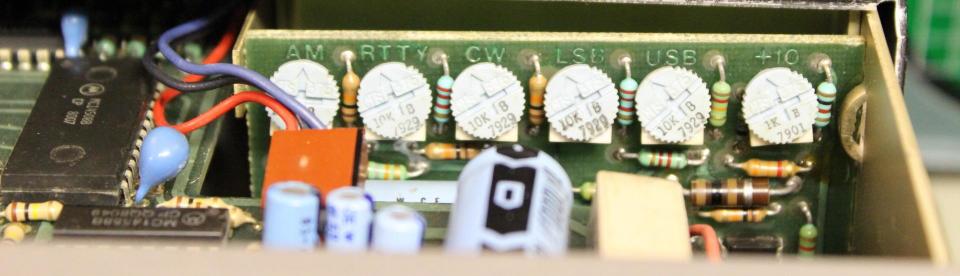
INRAD Compared to Stock LSB not set correctly ! !



INRAD Compared to Stock LSB now set correctly !!

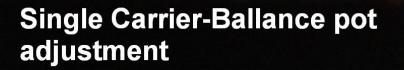


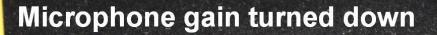
USB Adjusting pot



Adjust "USB" pot for Zero-Beat on 13.693.3 MHz

LSB adjustment pot





Adjust "LSB" pot for ZERO-BEAT on 13.696.7 MHz

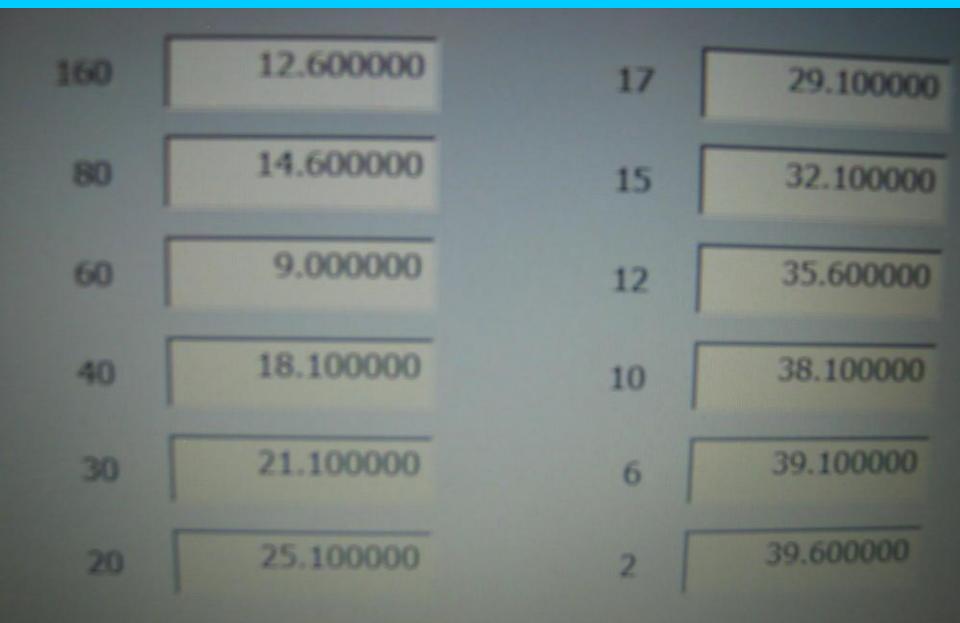
Adjust for lowest signal using another receiver or wattmeter in the lowest scale in USB and LSB.

The End

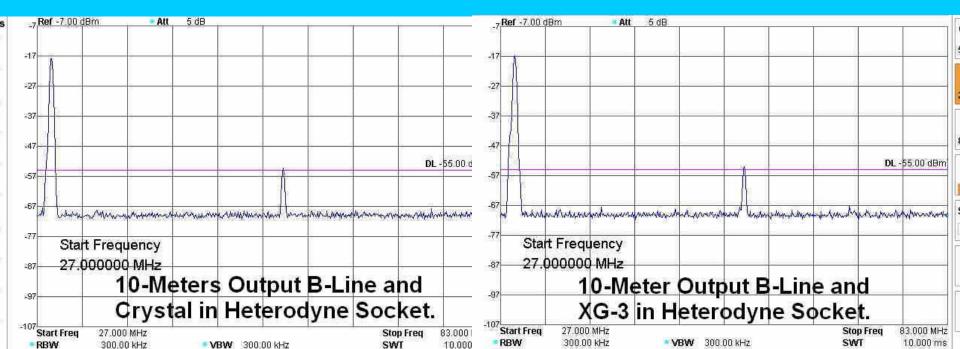
A Crystal Range Solution for the Drake 4-Line Gear

Published in Electric-Radio January 2015 Permission to use by: Ray Osterwald (N0DMS) Editor

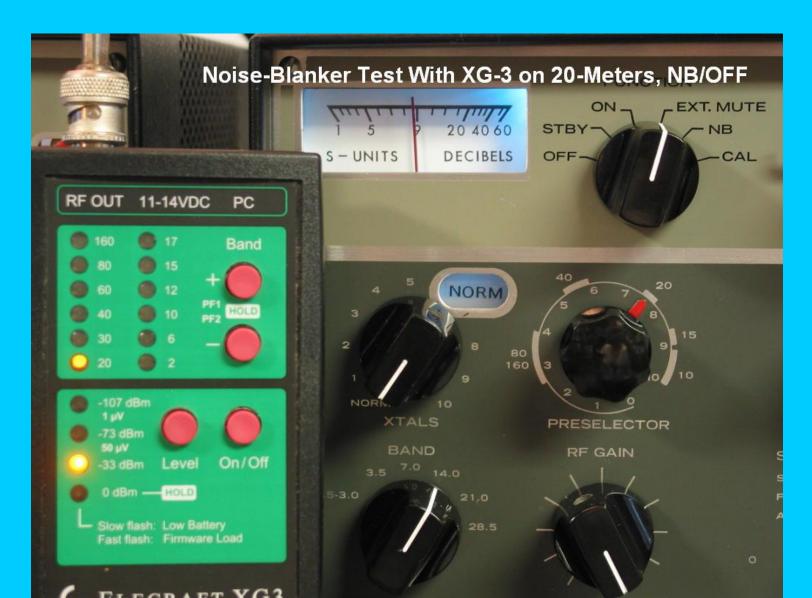
By: Jeff Covelli / WA8SAJ



XG-3 With Cable Adapter and Crystal Plug-In



T-4XB Power Output on 10-Meters with Crystal in Het. Socket & Elecraft XG-3 Generator in Het Socket



Other Uses For The XG-3 Generator

Noise-Blanker "Off"

Noise-Blanker "ON"

The End

The R.L. Drake Co. Started in 1943 during WW II.

After the war was over <u>Bob Drake</u> needed help to grow the company and he hired a young engineer <u>Milt Sullivan</u> from the University of Cincinnati.

RAKE Milt Sullivan (K8YDO) Drake's Chief Engineer 1946 to 1983 (37 Years Service) Plus 4 Years Consulting for Drake

Milt's Job Application in 1946 Hired for <u>86 cents</u> per Hour.

Date November 11, 1946

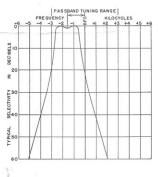
Spplicant's Name	Milton Arnold Sullivan, Jr.	
Job Classificati	on Title	
Date to Begin	Nov. 4, 1946	
Sourly Rate	86	

The above named applicant has been interviewed on the above date and hired in

Engineering

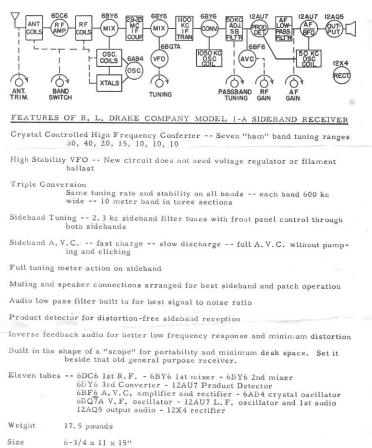
Department,

Supervisor



(1956) Drake 1-A Sideband Receiver

Milt's First Receiver Design



Model 1-A \$259.00

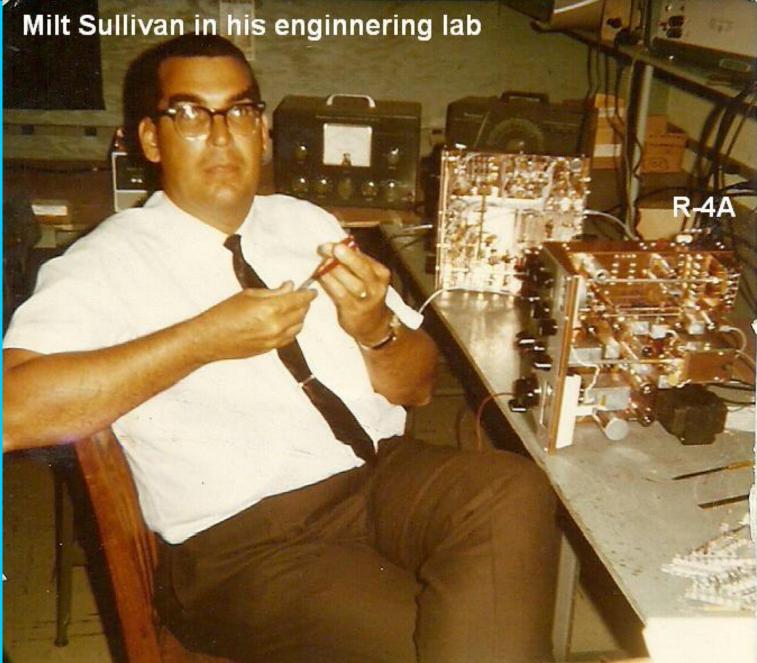
NEW

A SIDEBAND RECEIVER

45 watts at 115V A.C.

R. L. DRAKE COMPANY

Power consumption


MIAMISBURG, OHIO

(1960's)

Drake

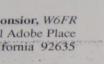
"A" Line

Rick Muething Engineer

Milt Sullivan Chief Engineer

Milt's Pride and Joy !

Milt's File Box sent from Judy Sullivan



Thousands of Notes

GRP KMTR

Plenty of High Power notes !

Mary Gonsior, W6FR 418 El Adobe Place Fullerton, California 92635

POWER ON A BUDGET

Using the Russian Svetlana 4CX1600B power tetrode in modern amplifier designs

S omething new has been added for highpower linear amplifier designs. It's from Russia with love—a conservative legal limit, cost-effective power tetrode tube.

Background

There was a film some time ago titled, "The Russians are Commig." The involucion of a rather complete line of high quality RF amplifier tubes manufactured in St. Petersburg, Russia, which employ the modern external anode technology, makes this a reality. A very large company—Svetlana Electron Devices, Inc., privaized in 1992—now sells its products worldvide. Recent descriptions in *Communications buarterly*¹ of two of their tubes, gave me the icentive to try one to revitalize my needy amethread the sults are presented here.

etlana 4CX1600B aracteristics

he tube, and its custom SK3A socket, are on in Photos A and B. It's a ceramic-tolexternal anode tetrode whose original cation was in a military transmitter, which to its ruggedness and quality construc-This tube was called the 4CX1600A, and much smaller cooler.) Thanks to several design features, the 4CX1600B exhibits erformance when operated in class AB1 latively low anode voltage.

Photo A. Syetlana 4CX1600B. Photo by W6FR.

The anode was recently enlarged and is now essentially identical to the 8877 in size and configuration. Unfortunately, its matching chimney hasn't yet been modified to fit. To overcome this problem, I designed one of my own. I've been told that a compatible chimney will be available in the near future. For the general tube mounting outline, dimensions, and construction details of my homebrewed chimney, please refer to Figure 1.

Figure 2 shows the tube's specifications, along with my actual operating parameters, while running the tube as a grid driven amplifi-

QRP XMTR

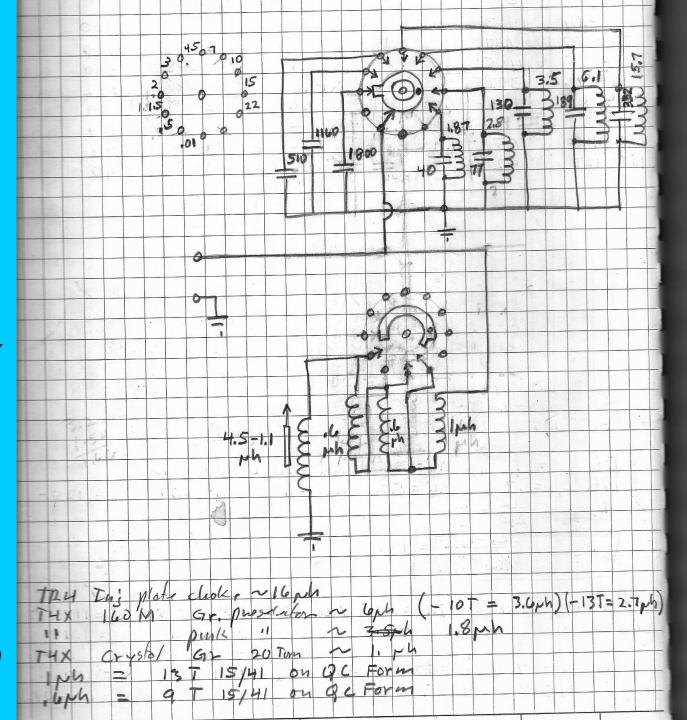
You can't go wrong with the new Svetlana **4CX1600B** or **4CX800A** tetrodes in your amplifier. Manufactured in the world's largest power tube factory in St. Petersburg, Russia, these two reliable workhorse tetrodes bring Russian tube quality and ruggedness to modern linear design. You can depend on **Svetlana Electron Devices** to bring the finest power tubes to amateur radio.

Call now for more information on these two winners and Communications Quarterly articles describing simplicity and cost savings with tetrode linear design. We will also send you a complete list of Svetlana power tubes for amateur radio.

Headquarters: 8200 South Parkway • Huntsville, AL 35802 Phone 205/882-1344 • Fax 205/880-8077 • Toll Free 800-239-6900

Marketing & Engineering: 3000 Portola Valley, CA 94028 Phone 415/233-0429 • Fax 415/233-0439 • Toll Free 800-5-SVETLANA

he Svetlana 4CX250BC. compact metal/cerami beam tetrode with a pl tion rating of 250 wats with for cooling. The 4CX250BC is inte Class AB SSB linear RF amplifi intended for stationary and m ment designs with power amp frequencies up to 500 MHz. T has an indirectly-heated oxid which operates at a low temp heater voltage for extended


The Svetlana 4CX250BC is a the Svetlana factory in St. Pe Russia, and is designed to b replacement for the 4CX27 manufactured in the Unite

(1960's)

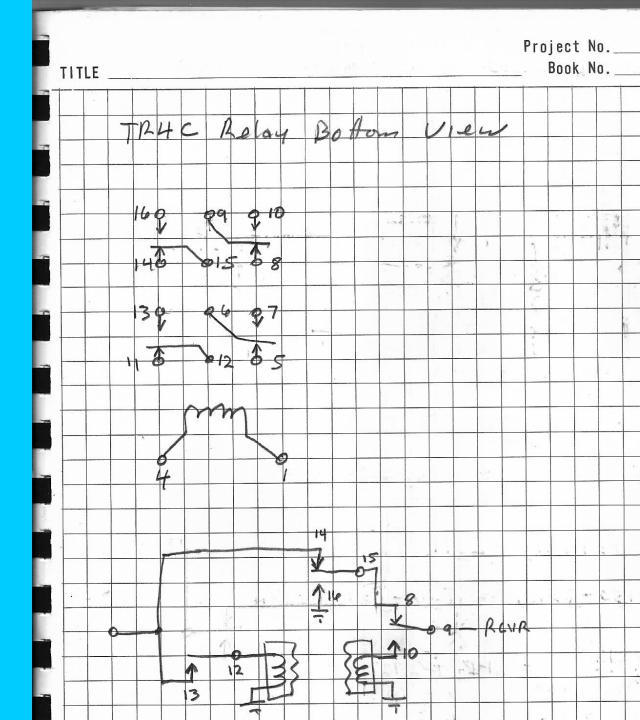
Drake TR-4 & T-4X

Inductance values on the Band-Switch

(1970's)

Drake R-4C

Pre-Selector Band-Pass Response

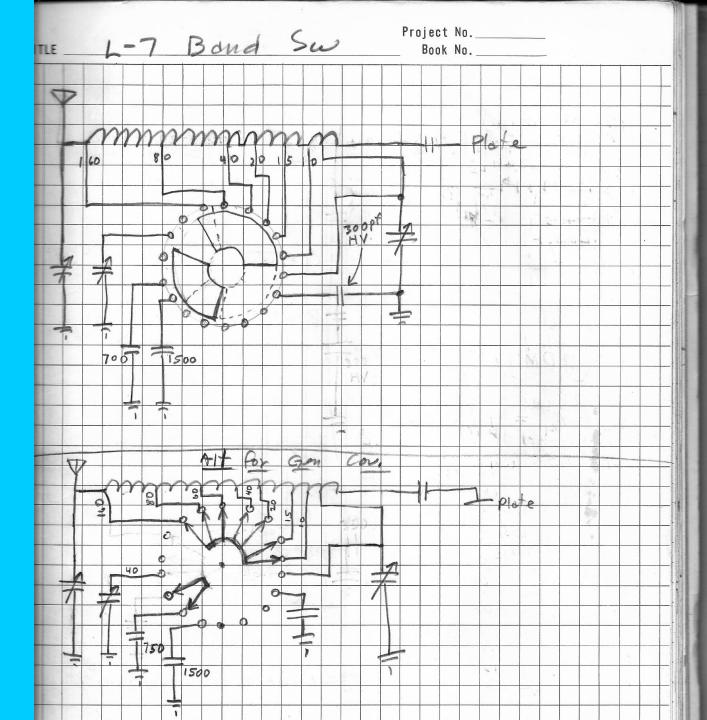

TITLE Prosola	eter Resp	MS-e	2.4 52 P	roject No. Book No.	rlofe: Sta	F R4C	ANT Cois
Freq MH 2 Z	Iusert Loss db 25 25	XMTR F 1.7 2.3	db 45 40	40 - f 25	46 + f + . 3		2d6 + F + 1.0
2	18 olb 10	1,9 1,7 2,3	42	-,2	+.3	-,5	+1.0
	20 20 7	2.7 3.3 2.7	41 38 40	28 3	+,35	64	+1.3
3 4.4 4.5	7 17	3.3 4.1 (3) (3)	35 35 30	-, 4	+,5	-1,0	+ 1,7 +2,4
8.8	10	(3) 8.3 (5) 12.4	35	8	+1.8	-2.2	+ 3.5
22,7		(75) 16,35 -(.75) 22.08 (625)	24	-2.2	+3.5	-6.0	+ 15
Nofe: Tried	Adding	torns +					avin down
Better norse		VIH2 8 - 15	d5 14 12 d5	g end) sont los		y up + 17	going along
		30 MHz	10 db				

(1970's)

Drake TR-4C

Main Relay Bottom View

MN-7 & MN-2700


Band Switch RMS Voltage Breakdown

MN-7K /MN-2700	Project No. <u>)-/4-77</u> Book No
Switch Breakdown	
REYNOLDS ALUMINUM Supply Company PERFORMANCE AS PROMISED	
ALUMINUM · STAINLESS STEEL · GALVANIZED Cent. Type 231 COMMERCIAL BUILDING PRODUCTS MM 2000 Sw: Band Sw Vo rotor to frame(shaft) Z	to and
Open contact to bladed contet 3 open contact to open contact	$\frac{1-4.5 \times 10^{-6} \text{ H}}{100 - 03.5}$
Ant su: Oak Type HC Cent. Type 300	
blade to shaft ?	(4,0) w= 2068 worths
910000111	100
Black front to black har 11 Contact to Contact (No black) 2: Contact to contact (No black) 2:	$\frac{1000}{2500} = \frac{1000}{2} = \frac{1000}{10} = \frac{3.5}{100} = \frac{1000}{100} = \frac{3.5}{100} = \frac{1000}{100} = \frac{1000}{$
REYNOLDS ALUMINUM SUPPLY COMPANY	2850 T-112 HO or 300
891 Redna Terrace, Cincinnati, Ohio 45215 • (513) 771- Enterprise 8940 for Dayton & Columbus • 800-582-1637 Ohio	8940 Ol for 3000 watts

L-7 Amplifier

> Tank Circuit Specs

Drake

L-7 Amplifier

Plate Tank Circuit "Q"

TITLE L7 Plate Tank Q	Project No Book No
3,800 MHz = 3930 (-450) = 450 = 3645 (+450) = 450 = 3645 (+450) = 450 = 3665 = 13,3	28.000 MHz = 28.900 HHz = 2.8900 HHz = 2.8900 HHz = 2.6700 Hz = 2.200 Hz = 2.200 Hz = 2.8900 Hz = 12.7 Hz = 2.89000 Hz = 12.7 Hz = 2.890000 Hz = 12.7 Hz = 2.89000000000000000000000000000000000000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21.000 MH 2 4.72700 $52=20200$ $Af = 1500$ $G = 21000 = 14$
$7.200 \text{ MiH}_{2} \\ f_{1} = 7480 \\ 7480 \\ 7400 \\ 7400 \\ 7000 \\ 7000 \\ 7000 \\ 7100 \\ $	$21,500 \text{ MHz}$ $f_1 = 22250$ $f_2 = 21550$ $Af = 1700$ $Q = 21500 = 12.6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rcl} 4.5 & M + 2 \\ f_1 &= 15000 \\ f_2 &= 13800 \\ \hline \\ Of &= 1200 \\ \hline \\ G &= 145 \\ \hline \\ 4.000 & M + 2 \end{array} $
21.25 MHz $f_{1} = 22000$ $f_{2} = 20350$ $Af = 1650$ $Q = 24725/1050 = 12.9$	f = 14500 $f = 13400$ $Df = 1100$ $G = 1400$ $G = 1400$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Drake L-7 Amplifier

Plate Transformer

Specs.

Project No.____ L-7 Plate Transforms TITLE Book No. Drake Construction & 5 /1/4 × 4 3/8 × 2/8 cartor leg E1-212 Lamination 36" Stack =.018 Core = . 92× 15.35× 3.125 of = 20.77 165 MO pcs .01890 = Core 160 Total weight of Transforms meas = 30.125 16 9.357 16 weight of coppon E Coppe @ 1.30/16 @ 91,50/m Cost of 12.16 91,50/mpcs Cost OF 14.64 = 26.80 131 Custran mic PS-7 Trans form E1-212 Lamination Facil = 018 1,5 =,92×15.35× Core 9.9716 -0 Des P4S 7.2516 7.2815 of copper Costof Copps 0 1.30/16 0 91.50/M 9 44 Cost 0 + Cort 91.50/M Sin tran Arice 21.50

DI dI I-

Project No.

Drake L-7Amplifer

(1977)

Plate Choke Specs

LE Plat	e Chole L-7	Book No	1990
77 7	#24 spaced	Fairite Core	
f I	ZOD	Rs Xs I	I PJ
31.6	1250 -1.24 58	87 1104 1.10	1502 W
31.0	10704 -71 31	48 1012 1.87	1217
30,0 28 21.3	1140 - 8 1 ⁻ 1360 - 86	78 1124 1.75	549 10m
28	1360 - 86	15 1357 1.47	
21.3	2100 -86 1:	16 2095 .95	133 (151
18.4	29701 -71 91	17 2808 .47	438 858
18.0	2400 - 59 4 12	36 2057 .83	858
17.5	19000 -71 6	19 1794 1.05	685
14.3 7.3	3000 - 88 11	05 2998 .47	46.5 20M
7.3	8500 -88 2	97 8495 .24	16.4 (tom
7.5	9300 -88 3	25 9294 22	5
4.6	100,000 -80 17 100,000 +80 43,500 +85 3	345 98480 02	
4,23	100,000 +80	00 00 00	7
H.D	43,500 +85 3	791 43,334 046	8) BOM
3.5	19,000 +87 9	194 18 974 .105	11/001
2.0	5200 +88 1	81 5197 38	
3.5 2,0 1.8	19,000 + 87 9 5200 + 88 1 4500 + 88 1	57 4497 44	31
1,6	3800 +88 1	33 3798 53	37
110			
			8
Zanas	19.2	31.4 48.0	
Poles	7.6 20,5	33.5	
100103			

(1970's)

Drake L-4B Amplifier

Plate Choke Specs

tleP	late ch	okę L4	Project N B Book N		1.111
4 3 4,7 3 4,7 3 4,5 30 29,5 29,5 29,5 29,4 21,25 28 23,9 23,8 23,7 23,7 23,7 23,5	2 1220 1000 U 1900 25001 1740 1080 U 160 62001 4300 1720 980 720U	$ \begin{array}{c} - & 41 \\ - & 77 \\ - & 77 \\ - & 87 \\ - & 42 \\ - & 42 \\ - & 42 \\ - & 47 \\ - & $	R.5 591 225 99 1250 1293 422 29 5140	X 5 1 1947 974 1897 2145 = 1164 494 1460 3467	I Pa 1, 44 1540 2,0 900 1,05 110 8 800 1,15 1708 1,85 1447 1,2 42 ,32 535
21.3 7.55 7.25 7.25 7.00 4.3 7.3 4.8 4.9 4.0 3.5 2.0 1.8 1.6	2370 255007 2400 2804 3170 30,000 100,000 100,000 100,000 5800 4500 2070 1850 1610	$-\frac{89.5}{0}$ $+\frac{67}{0}$ $-\frac{89}{0}$ $-\frac{89}{0}$ $-\frac{89}{0}$ $+\frac{85}{0}$ $+\frac{88}{0}$ +			
une Grip O ng une 3	short >	ns 18 xs 12.0	8.6 23.8 2 23.8 3.6 23.7 19.7	29.9 29.8 29.9 29.9 25.1 30.	349 348 34.9 4,35,5

(1970's)

Drake L-4B Amplifier

Out of Band Specs

				Project No		
ITLE L4.	B linea	r outo	+ Band	Book No.		51151
				"cus"		
Band 1	4 1	input 1	Pin)	Port		1
Dae		VSWR	1.00	10-1		T
pos 80M	4000	1.85	130	920		
- BOM	3750	1,2	130	920		
	3500	1.7	125			
	3352	2.0	108	900		-
	4500	3.4	45	520		
	5000	7	20	150		
40M	5000	3,9	38	260		
	5500	5.6	25	240		
	6000	2.2	74	500 820		
	6500	.75	38 25 74 115	820		
	7000	1.3	125	930		
	72	1.15	125	950		
	7.5	1.45	125	950		
	8.0	2.2	110	800		
	8.5	3.3	55	450		
V	9.0	5.3	110 55 33 (15	215		
20M	14,2	125	115	900		
	9.765	3.4	48	300		
	10.0	3.6	46	310		+ + + +
	11.0	3,5	48	370		
	12.0	2.7	70	600		
	13,0	1.9	118	900		
	14.0	1.3	115	900		
	14.5	1.4	112	900		
	15.0	1.85	110	820	+	+-+-+
	16.0	3.3	45	350		
1	17.0	6.5	25	180		
15M	16.0	2.3	80	600		
	17.0	2.1	92	720		+
	18.0	1.95	100	800		
	19.0	1.80	90	780	+	
	290	1.4	92	700		+ + + +
	21.0	1.4	92	800	+	+-+-+-
	21.5	1.4	90	780		
malained to & Und	erstood by me.	l.5 Date	GO Entered by	780	Date	
to α Und	lers tood by me, (

Drake TR-7

PA Load Effect On Power

ITLE TR-7 PA Load Effecton Pur Book No.										
ITLE _/,	R-1 PI	A Look		ecton	Jun Book			1 1		
L	imits of	Max	appt	- (Pou	of where	Pur	Just	starts	todra	
Æ			SUP							
f	Z	0	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	R	X	<u>:</u>				
3.8	34	+26	1.75	30.5	115.4	St. 1-				
	58	- 37	2.6	463	-35	1 1				
	40	+ 30	1.75	34.6	20	22 -				
	76	-37	2.4	37	-28	<u>(</u>				+
	92	£5	1.9	92	8					+
	26	-10	7.9	25.6	-4.5	· · · · · · · · · · · · · · · · · · ·				
		+26	1.1	66.5	23.2					
	40	+35	1.7	32.8	23					-1
	40	-3Z	2,45	34	- 2/12		Sector Sector			
1.8	2.6	+23	2.0	24	10,2					
	48	-29	2.25	59.5	- 33					
	3	+29	1.9	27 48	-31					
	49	-33	2.25	40.6	-27.4	f and	4-32-5			
	83	-34	2.4	78	-28,4					
	85	D	2.0	85	0		11.15.5			
	68	+16	1.5	45.4	18,7	2				
	34	+ 31	1.75	31	18.5				e	
	60	+23	1.4	55	23.4				•	deserves
	22	+2	2,3	22	.8					
	35	-30	2.3	30,3	17.5					
						288				
7.2	46	+34	1.7	38.1	25.7					
	38	-30	2.4	33	-19		.11	1 1		
	38	- 35	2.5	45	-31.5					
	74	+25	1.75	47	31.3					
	91	+12	1.8	89	19	1				
	95		2,4	92 96	23					
	96	-14	2.0	96	0					
	27	0	2.0	27	0			_		

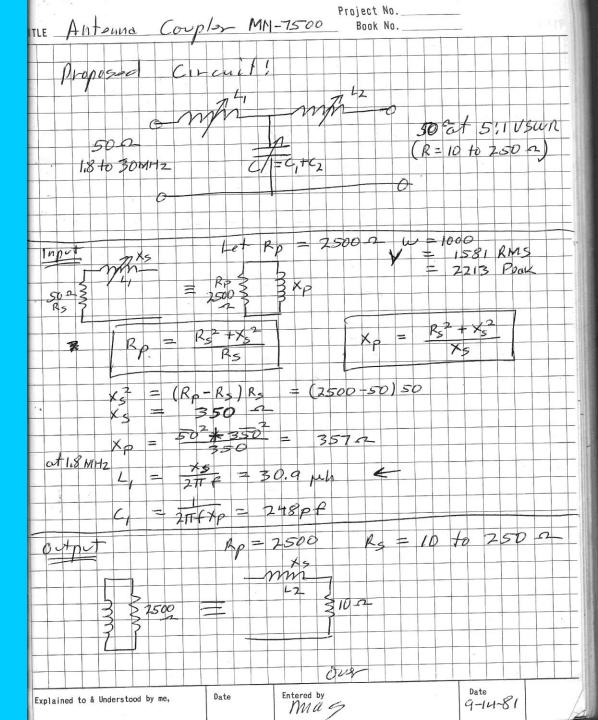
Ductor No.

(1970's)

Drake

Cooling Fan

Specs


TITLE Coole	a Fun	5	Project No. Book No.	
	3	No		lottage is found to
P.S 19-32 00-	1501× 2004	. OTher	mista O	Fluke 8600A
		Marita	in plastic	
Fan Type	for	Tube 99	12 10 × 11/2 HUM 1710	Algo Noise
IMC WSZHOTELY	11.12	12.65		
IMC WS 2107FL-20 Rotion WRZAI	11.73	12.88		
PAMOTOR 4500C	12.50	14.90	85	10
IMC WS2107-FL TORIN TA450 S		14,54	6	6
MC WS2107-FLZ ROTRON WRZAI		14.30	24	3 4
IMC W52107 - FL9 ETRI 133 - LY - 21-32	12.13	14.07	3	2
ETRI	12.71	14.76		
FL-9 FL-9	12.71	14.57		
Rotron WRZAI		14.33		
FL-9 FL-2		14.12		
Rotron FL-2		14.20		
<u>FL-9</u>		14.02		
Rothon FL-2		14.09		
FL-2 ETAI	12.04	14.07		
FL-9	· · ·	13.86		

(1981)

Drake <u>"NEW"</u>

MN-7500 Antenna Tuner

DRAKE	C	pi	/	INN/2	0 = 110		Project	No		
UNAKE	TITLE M	N7500	Knos	Se	tting s		Book			
	freq	Autz	Linh	Τ.	6 pt	0-10	12 mb	Th	Rp	May Pur.
	1.8	10	30,95	42	805.7	,3	13.95	21	2500	1225TWC
	122	10 -	-30.0-		830	0	13.54		.2355	71 (1) Sherk
	0	50	30A5	42	495.1	4.2	30,95	42	2500:	1225
		250	25,4	35	424	5.1	53.24	64)	1700	1800
(4004)	2.0	10	27.85	39	725.1	1.3	12.56	19	2500	1225W
(1981)		50	27.85	39	445.6	4.8	27.85	38		31
1 1		250	27,85	39	3183	6.4	59.7	(1)	2025	1225
	3.5	10	15,92	24	414.3	5.2	7.175	64	2500	1512
	2.5	50	10,-12	11	254.6	7.2	15,92	24	1500	1225
		250			181.9	8.1	34.1	45	11	н
	4.0	10	13.93	21.5	362.6	5.8	63	11	11.)1
Drake		50		1	222.8	7.6	13,93	21.5	26	21
		250	1	4	159.2	8.4	29.84	41	11	64
	7.0	10	7.96	13.5	207.2	7.8	3.6	6.8	N	
MN-7500		50			127.3	8.8	7.96	13,8		
		250	-	4	91	9.3	ו,רו	25		
<u> </u>	7.5	10	7.43	12,5	193,4	8	335	4.5		
Tuner		50		1	118,8	9	7.43	12.5		
iunci	14.0	250	200	7.5	84.9	9.3	15.9	24		
	17.0	50	3,98	1.5	103.6	9.6	3.98	7.5		
		250			45.47	9.8	8.5	14		
	14.5	10	3.84	7.3	100	9.1	1.73	3.9		
		50	1		61.47	9.6	3.84	7,3		
Knob Settings		250	V	V	43.9	9.8	8.23	13,8		
MIDD Settings	21	10	2.65	515	69.1	9.5	1.2	3	V	V
		10	2.4	5.0	77.1	9.4	1.07	2,5	2000	1,531
Snacs		50			47.3	9.8	2.4	5.0		
		ome		Ne	33-	000	-0	01		4

250

10

10

250

250

30

C=0-830pf May RMSV=1750

V

3.5

4.1

14

2.5

V

1.86

1.5

11

1.2

1.5

33.7

48.3

35.8

25.4

31

5.0

.07

1.5

3.2

2.4

9.95

9.6

9.93

710)

10.

8.1

0

3.5

6.3

1

1700

2500

1700

11

1100

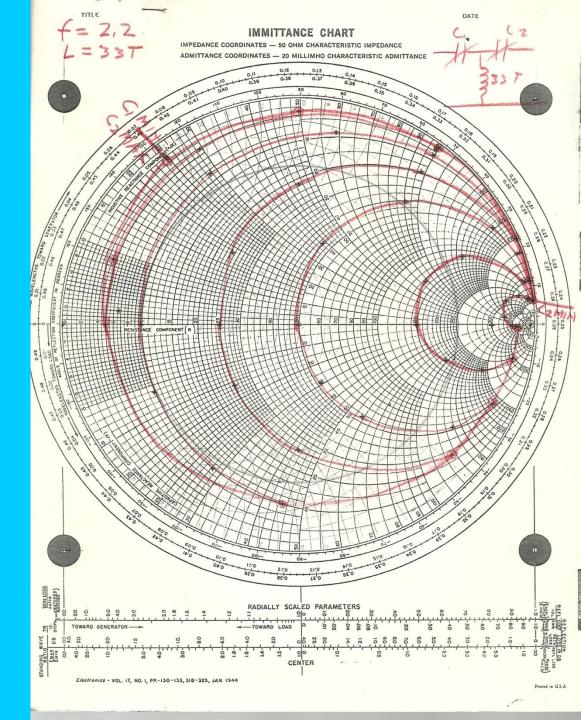
 \checkmark

1,800 1225 W

1800

++

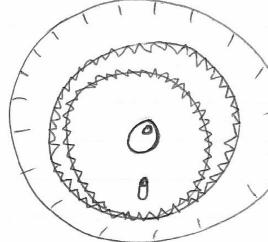
2784


Specs.

(1<mark>98</mark>1)

Drake MN-7500 Tuner

Smith Chart Calculations



(1981)

Drake MN-7500 Tuner

Counter Dial Gear Calculations

Stock Orive prod cet. ratio INT EXT Pagus (48 Pitch) 24:1 48 46 31,21 72:1 71 72 22 -St 72 70 36:1 21 Elle 84 21,24, 80 21:1 2096 95 96:1 22 120

Drake MN-7500 Tuner Roller Inductor From Murch Electronics

Murch Electronics, 3 bey one selling this outfit But won't effect our order	Inc	COMPONENTS LIS
But won't effect our orden		
CAPACITORS - Aluminum plates .032" thick with rounded edges - brass shafts - heavy brass	INDUCT	OR - Ceramic inductor, wound with #9

contact springs - large 1/4" tie rods

INDUCTOR - Ceramic inductor, wound with #8 wire - 3/8" dia. aluminum shafts - brass shaft & idler wheel - brass springs

ALL COMPONENTS ARE OF THE SAME RUGGED QUALITY USED IN THE ULTIMATE TRANSMATCH

100	- \$ 68.00 ec	
PK. V. 250	DIMENSIONS	
1500 500	2- 52.00 ec - 35%	RETAIL PRICE
4500 1000	2 8 ¹ /4" x 3 ¹ /4" x 3" 4 4 5 6 10" x 2 ³ / ₄ " x 3	\$48.00 & Shipping
	$-14\frac{1}{4}$ " x $2\frac{3}{4}$ " x 3 "	\$56.00 & Shipping \$68.00 & Shipping
1000	$2^{"}$ dia. x 2" h	\$80.00 & Shipping \$21.95 & Shipping
Wayne mu	irch	φ21.95 & Snipping
	AND	
9, Franklin, ME 0	4634 207-565-2212	VISA master charge
/	4500 500 4500 2000 4500 2000 4500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Drake

MN-5 500 Watt Antenna Tuner

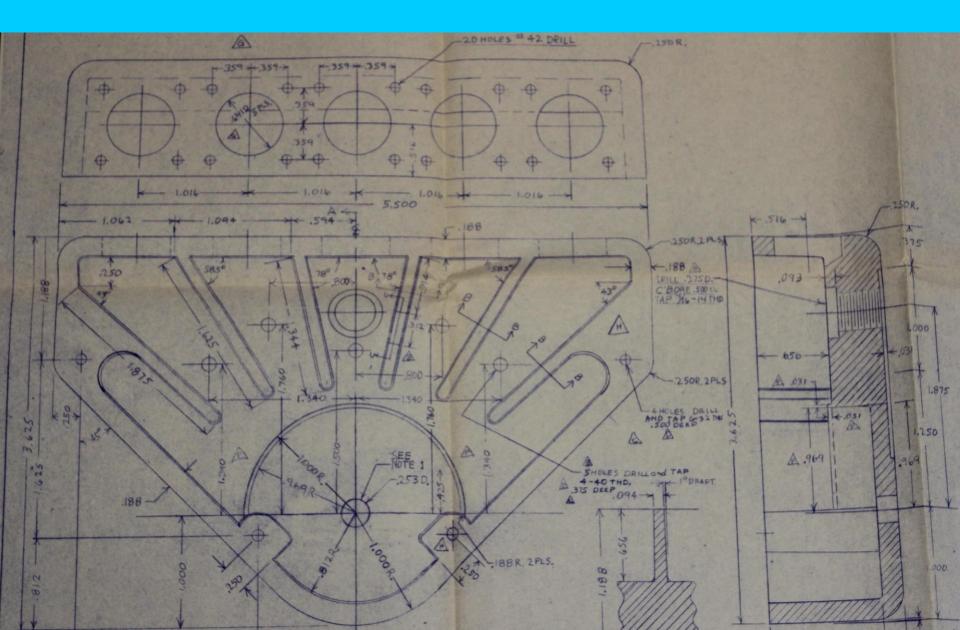
Economy Model

No Wattmeter Small Roller Inductor

\$ 170.00

	MN5 EC	omoning Mater	130%
Small mater for	toning (No	us Himeter)	500 w pEp
Material permond fro	in MINITSOD		
ITEM	Prico	ITEM	Price
Smaller V, Cap,	and the second	110171	FFICA
(225/25R) 1/2 length	,94		
Smaller Bolly Coils			
6" US 10"/#16 vs #12 une	2.74		
Meter - diff 500			
Ant Sur 1Kuos	4.54		
2 50 239	578		
Averly ge	2.85		
Pot			
PE ASSY			
Viny/ Mat 3/3	1.227		
Db shaff	,629		
carp la	11491		
4.8 Megs	1320		
Sub, Danel Hanor	.3027		
Extrusion 2/3 Ma	+ ,4033		
Chassis 3/5 Ma	+ 1.0222		
Dottom 3/3 Mat	.4457		
Remore from MN7500	23.719		
Cost Material for MN-S	= 31.15		
LOSON Shop ,671-07.50 =. Loson Assy 2.50 4.85 = 17	2.125		
Total DL	17.15		
0H 2.17X	37.22		
	85.51		
G+A 17%	23.08		
Prof 20 %	27.15		
min Deals price	135.74		
GitA 17% Prof 20% min Deales price Am Niet	171.00		

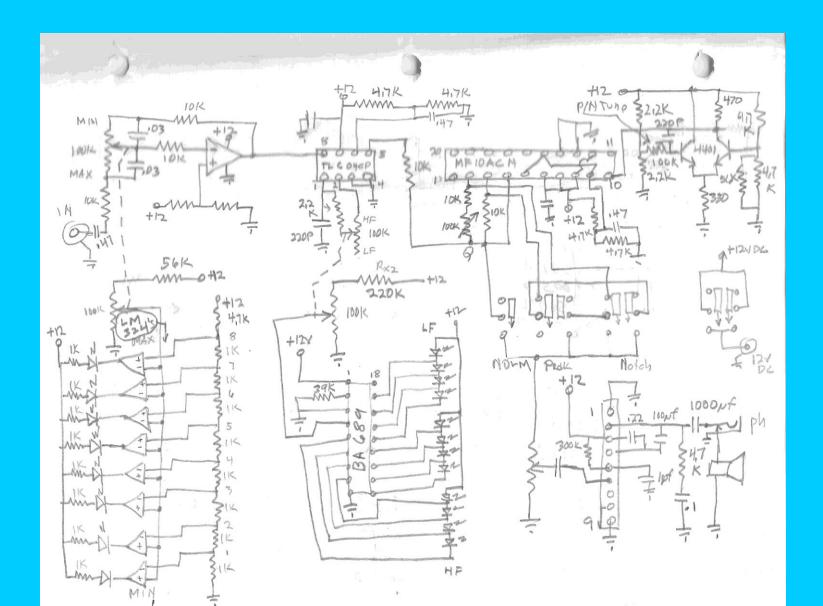
Milt retired from R.L. Drake in 1983 and stayed on for 4 years consulting for them

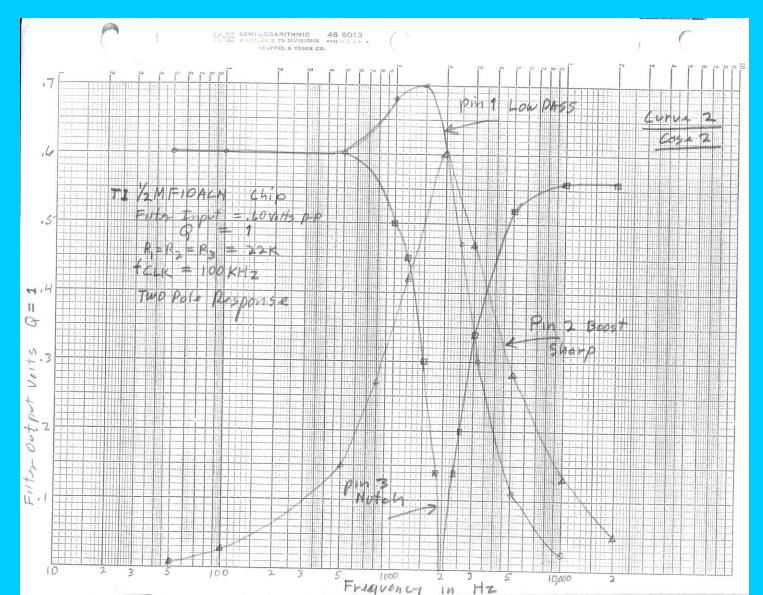

He also consulted for Lytton Industries & taught engineering for Wright State

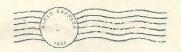
Consulted & Designed for Alpha-Delta

Milt Sullivan's Consulting & Designing for Alpha-Delta

4-Position Coax Switch


Milt's Notes for Alpha-Delta coax switch


Alpha-Delta VRC Variable Response Console Note the similar look to the Drake 2-BQ speaker ! !


VRC Hand Drawn Schematic

VRC High & Low Pass Filters

Alpha-Delta VRC Speaker 4-1/2 Inches

10" Square Frame 'oofer

woofer with a paper cone and treated cloth surround. Black stamped frame and black cone. Perfect replacement for many name brand speaker systems that require square frame woofers. Power handling: 40 watts RMS/70 watts max. •Voice coil diameter: 1-1/2 inches +Impedance: 8 ohms Frequency response: 29-5000 Magnet weight: 12 ozs. +Fs: 29 Hz +SPL: 92 dB 1W/1m +VAS: 5.37 *QTS: .33 *QES: .38 *QMS: 2.37 ★XMAX: .129 ◆Net weight: 3-1/2 lbs.
Manufacturer model number: E25FC92-54F + Dimensions: A: 10-1/4", B: 9-1/8", C: 4-1/2", D: 3-1/2", E: 1-3/8".

12" Square Frame Woofer

12" woofer with a paper cone and treated cloth surround. Black stamped frame and black cone. Perfect replacement for many name brand speaker systems that require square frame woofers. •Power handling: 50 watts RMS/ 80 watts max. •Voice coil diameter: 1-1/2 inches + Impedance: 8 ohms +Frequency response: 34-4000 Hz ·Magnet weight: 14 ozs. +Fs: 34 Hz +SPL: 94 dB 1W/1m ◆VAS: 7.39 ◆QTS: .42 ◆QES: .51 ◆Qms: 2.38 ◆Xmax: .129 ◆Net weight: 5 lbs. +Manufacturer model number: L30FC14-51F *Dimensions: A: 12", B: 10-3/4", C: 5", D: 4", E: 1-3/8". #290-080 \$27⁵⁰₍₁₋₃₎ .. \$24⁹⁵_(4-UP) #290-130 \$35⁸⁰₍₁₋₃₎ .. \$32⁸⁰

#290-080

() PIONEER

#290-130

10" Musical Instrument Speaker

Ribbed paper cone with treated cloth accordion surround. Vented pole piece for heat dissipation and reduced distortion. Perfect replacement for many P.A. and musical type speakers. Power handling: 100 watts RMS/ 200 watts max.
 Voice coil diameter: 2 inches +Impedance: 8 ohms + Frequency response: 30-3000 Hz +Magnet weight: 40 ozs. +Fs: 30 Hz +SPL: 96 dB 1W/1m +Vas: 5.8 *QTS: .15 *QES: .18 *QMS: 1.08 *XMAX: .129 •Net weight: 8 lbs. •Manufacturer model number: A25GC40-51F-Q *Dimensions: A: 10-1/8", B: 9-1/4", ", D: 5-1/2", E: 1-3/8".

0-094 \$41⁵⁰ \$38⁵⁰ (4-UP) 12" Mucical Instrument Checker

4-1/2" Full Range

Paper cone with treated cloth surround. Open back and stamped basket. Perfect for bookshelf type speakers and car stereo installations.

 Power handling: 20 watts RMS/30 watts max. + Voice coil diameter: 1 inch Impedance: 8 ohms *Frequency response: 70-15000 Hz +Magnet weight: 9.3 ozs. +Fs: 70 Hz +SPL: 90 dB 1W/ 1m +VAS: .31 +QTS: .35 +QES: .47 +QMS: 1.4 *XMAX: .043 *Net weight: 2 lbs. Manufacturer model number: A11EC80-02F + Dimensions: A: 4-1/2", B: 4-1/8", C: 2-3/8", D: 3-1/8", E: 1".

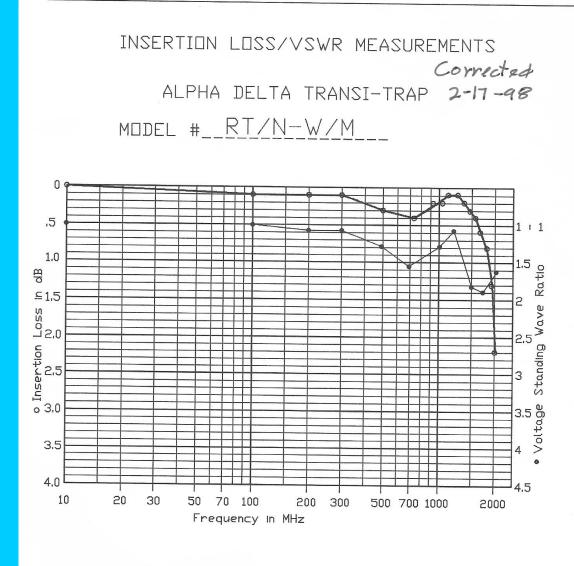
#290-010 \$10⁵⁰

Papar cone with blue poly form

8" Full Range

ported 8×8×6 Cobust

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f dB 2950 70 3010 80 3020 87 3180 84 3420 84 4180 84 4940 88 5550 88 4500 90 7000 93 7900 88 8500 88 12000 85 12800 85 12800 87 12800 80 13900 70 14300 70 14300 70 14300 70 14300 55
390 410 432 89 432 85 490 85 520 93 545 85 410 87 450 83 480 90 720 95 130 94	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	


Some More of Milt's Great Work

VSWR

Measurements For The Trans-Trap

Measurements made and certified by:

MILT SULLIVAN EE-Engineering Consultant 1303 Pilsdon Crest -- Mt. Pleasant,SC, 29464 Phone 803-884-1441 -- Fax 803-884-3254

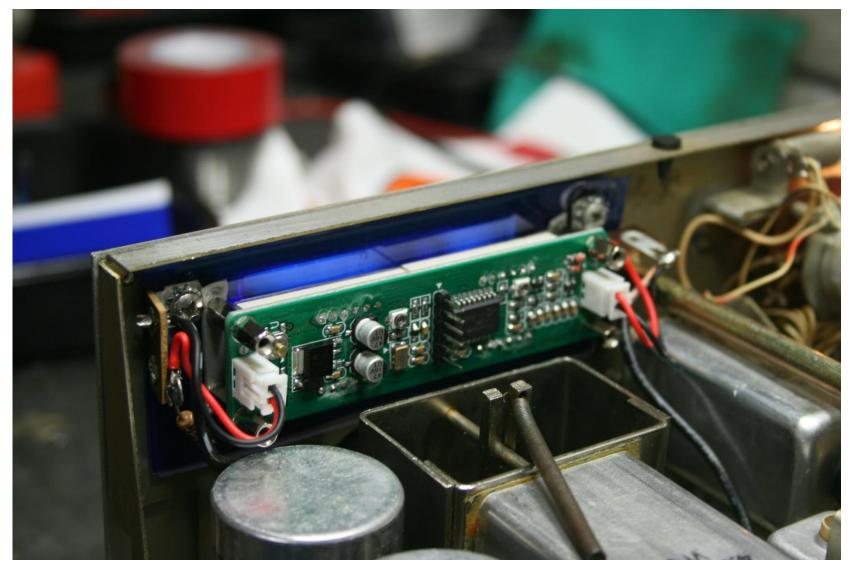
Signed_Milton Q. Sullivon Date 2-17-98

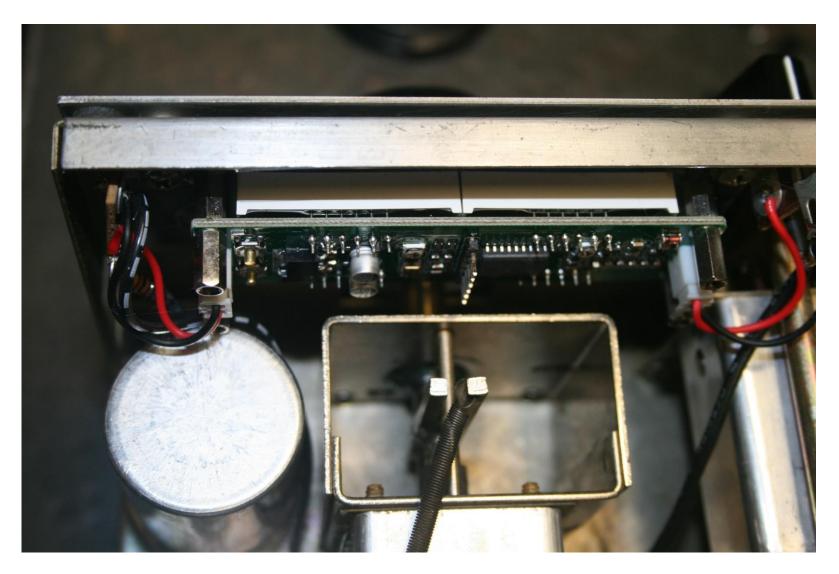
On October 28, 2010 Milt Sullivan died peacefully at the age of 85

Thank You For Watching

The End

By: Mark Gilger, WB0IQK


R4/T4 Internal Frequency Display



Full article located : www.wb4hfn.com

Full article located : www.wb4hfn.com

• Cost of counters : < \$12 on eBay.

• Counters are distributed by an eBay seller "elecbuy".

http://stores.ebay.com/elecbuy?_trksid=p2 047675.l2563

Specifications:

- Working voltage: DC 8V-15V
- Working current: 90mA(max)
- Input impedance: high resistance
- Measuring range: 0.1 MHz to 65 MHz
- Accuracy: 10 Hz
- Sensitivity: better than 60mVPP
- Display digits: Six common anode LED display, the highest display six digits.
- Dimensions: Length × width × height : 91 mm × 28 mm × 20 mm

- These counters are easy to install in about 2 hours.
- I've installed this in my T-4XC and R-4C with the same results. This upgrade will also work in the older lines of the T4 and R4 series.
- It has a provision for one positive or negative IF offset, in this case the 5645kc.
- It has the capability to read down to 100 or 10 hz resolution.
- Intensity can be adjusted in 1-8 steps.

Full article located : www.wb4hfn.com

Drake R-4 and T-4 Series Internal Frequency Display and VFO Supply Regulation

By Mark Gilger, WBØIQK 11827 Fraze Street Doylestown, OH 44230 wb0iqk@arrl.net

Introduction

I've been collecting and using Drake equipment for about 40 years. Recently I became curious if an internal frequency display could be mounted inside of my R-4C and T-4XC. I came across a mini 1-50 MHz frequency counter on eBay, and ordered a couple of them to experiment with. I was immediate impressed, and I started the task of testing it on both the R-4C, and T-4XC. The test proved that the counter was compatible with both R-4 series receivers, and T-4 series transmitters. I assumed it would be difficult to figure out the mounting, however, it turned out to be pretty simple.

There is one thing that is worth nothing before we start the upgrade process:

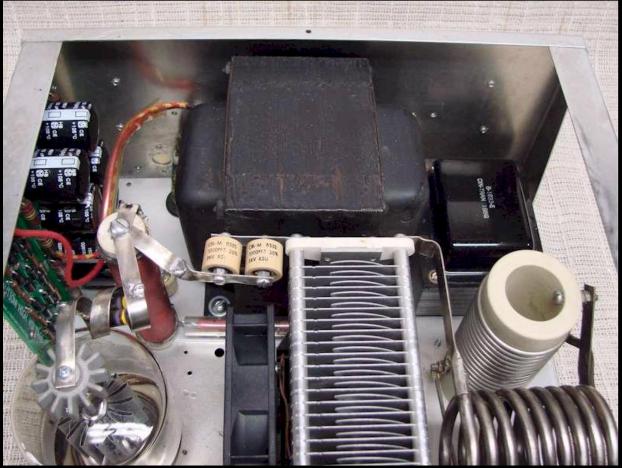
I installed the counter in 2 different R-4Cs, with similar drift characteristics. Both drifted close to 1 kHz over about a 3 hour period. Different results were obtained in both, as far as frequency stability. Both receivers also received better PTO voltage supply regulation; per the procedure at the end of this article.

My first installation was a 16K serial number model. It had plastic gears. The second R-4C was a 29K serial number, and it had metal gears. I chose to remove the plastic gears on the 16K receiver; making it have almost zero drag characteristics. I kept the metal gears in

Figure 1: This classic Drake R-4C receiver has been upgraded with a modern digital display.

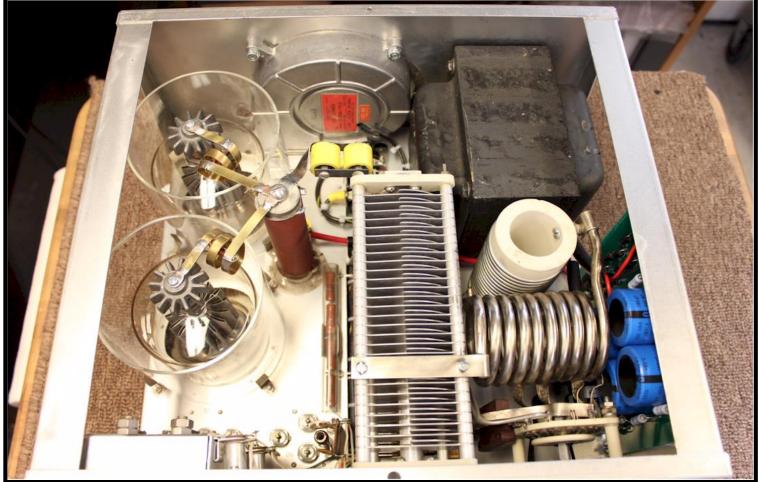
32

Drake Vintage Radio

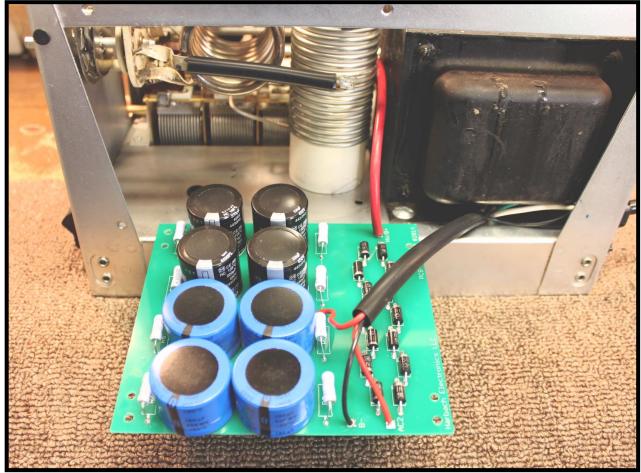

Email: wb4hfn@wb4hfn.com Website: www.wb4hfn.com

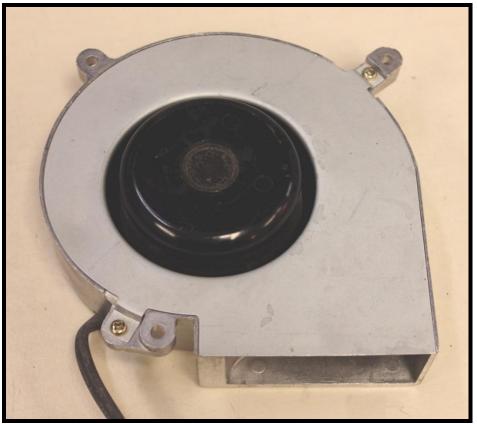
DRAKE The L4B All In One Revisited

In 2012 the redesigned L4B with single tube and with built-in high voltage power supply.



In 2012 the redesigned L4B with single tube and with built-in high voltage power supply.



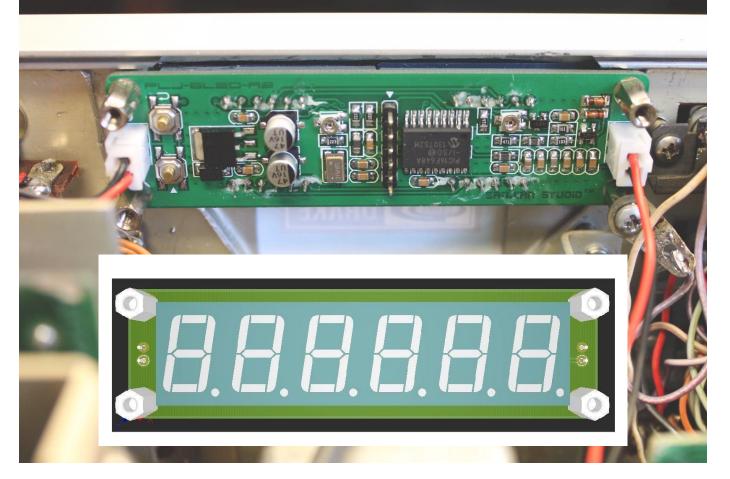


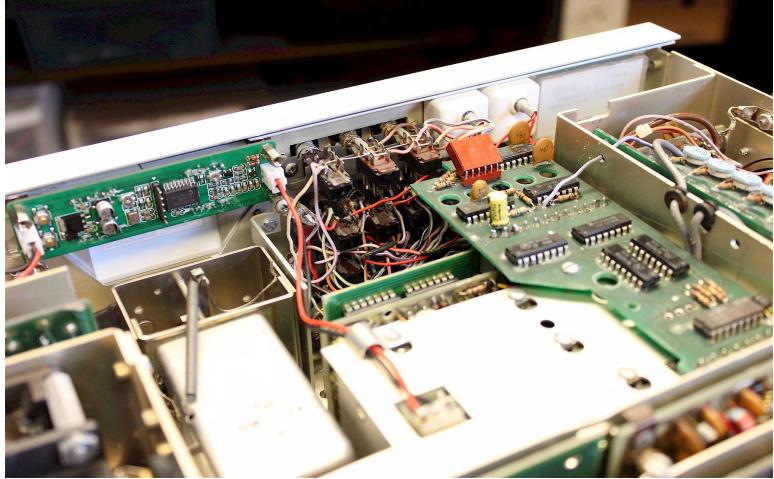
The L4B New Version

The L4B New Version

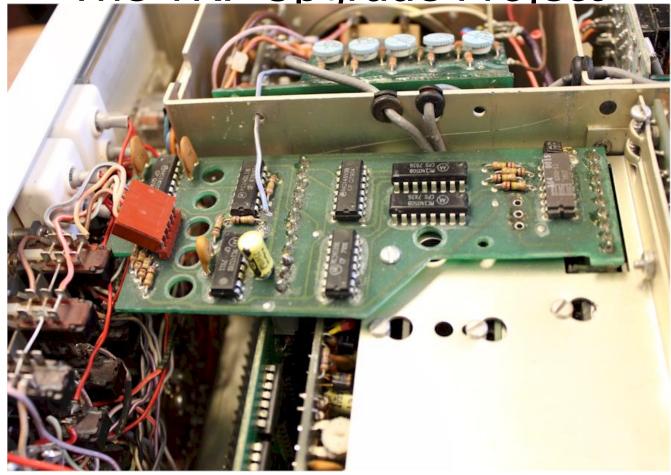
DRAKE The L4B Two Tube "All In One"

The TR7 Upgrade Project

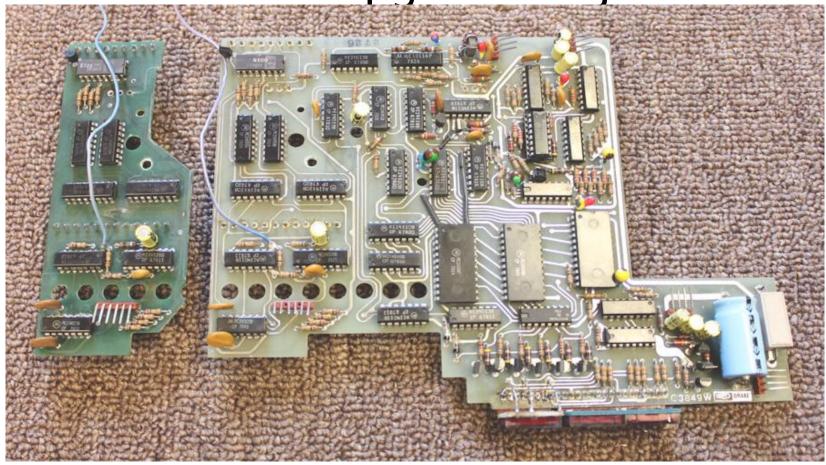

This is my never-ending TR7 project that I am constantly thinking of ways to improve the performance.


The new much larger digital display is the most significant upgrade.

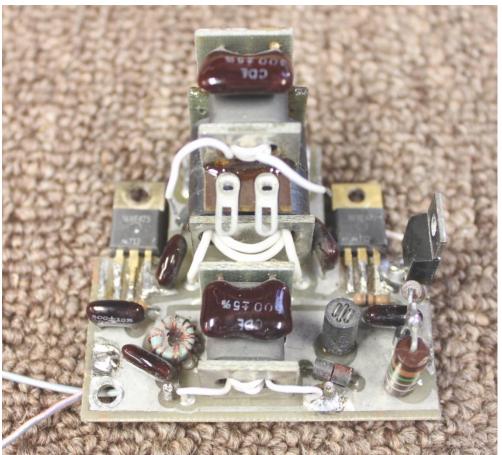
The digital display is a 65Mhz frequency counter with a programmable offset which is measuring the VCO frequency, with the 45.05Mhz IF frequency as the offset.


DRAKE The TR7 Upgrade Project

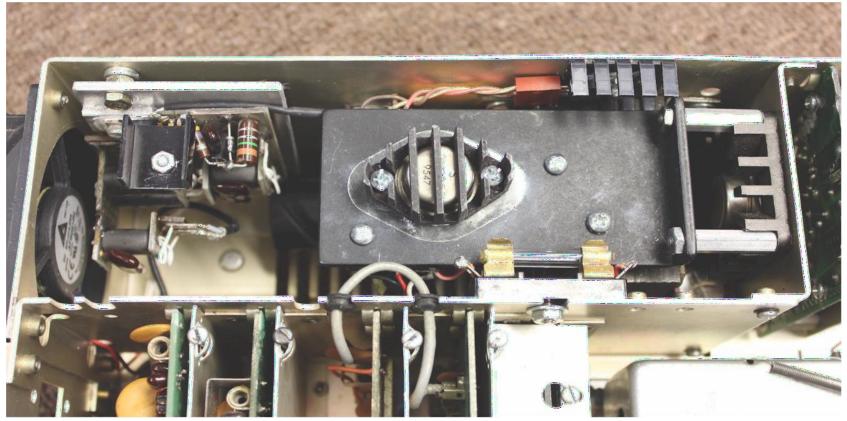
Wide angle view of the inside top area of the TR7 showing the new digital display and the cut away section of old DR7 board.


The TR7 Upgrade Project

The DR7 board has two distinct sections, the frequency controller, and the frequency display section. Shown here is only the frequency control section of the board



The TR7 Upgrade Project


Here is a side by side view of the DR7 digital display board, shown on the left is the frequency control section cut away from the rest of the board.

The TR7 power amplifier section is a cut away section of the original PA amplifier, the driver stage which drives the two final transistors. This section puts out about 15 watts.

Shown here in the area originally for the PA amplifier, now contains the AC power supply on the right and the new PA amplifier stage on the left.

DRAKE The TR7 Upgrade Project

So far the list of changes include:

- Built-in AC Power Supply
- 15 watt output Power Amplifier
- Large Blue LED display
- Digital Display board cut away modification
- Relocation of the Mode Switch frequency adjustments
- Removal of the entire analog frequency display section.
- New LED background lighting.
- Transmit predriver section of the PA amplifier relocated to the plugin slot of the old power supply board.
- New low noise balanced mixer stage in the receiver front end.
- Replaced the mixer diodes with new low noise tunnel diodes.

DRAKE The TR7 Upgrade Project

So What Are The future Upgrades:

- Adding the Digital DDS PTO and eliminating the analog PTO.
- The AUX programming switch will become the IF bandwidth selector with up to 8 digitally programmable IF filters.
- The "A-B-C" IF filter selector will become the "A & B" digital VFO selector with the "C" position for operating split frequency.
- Anything I have not yet thought about adding to the radio.

PRIZE DRAWING

Goal was to make time for presentations.

Tickets were pre-drawn in the presence of honest witnesses. Stubs handed out randomly as you entered.

Only 1 prize per person.

Please claim your prizes in the hall after we dismiss.

The winning ticket numbers are.....

Questions & Answers

Ron, WB4HFN Mark, WB0IQK Gary, W8PU Jeff, WA8SAJ Evan, K9SQG

M.V.G. May 2015

The Path Ahead...